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Abstract 

 

The impact of polydimethylsiloxane (PDMS) on oxidation of soybean oil at frying 

temperatures was investigated. At concentrations of PDMS greater than that calculated to 

be necessary for a compact monolayer on the oil surface, the rates of degradation of 

linoleate (18:2) and !- and "-tocopherols were slower than in untreated oil. Degradation 

rates of 18:2 increased after a certain time at frying temperatures, likely caused by a 

reduction of the tocopherols and/or the PDMS to levels at which they were no longer 

protective. PDMS decreased oxygen transfer to the oil at temperatures close to frying 

temperatures. The concentration of 4-hydroxynonenal (HNE), a toxic product of 18:2 

oxidation, was affected by PDMS concentration. In general, PDMS retarded HNE 

formation when used at concentrations greater than the monolayer concentration. PDMS 

concentrations capable of forming multilayers were more effective than a monolayer, and 

the protective effect lasted for a longer time.  The results strongly suggest that PDMS 

decreases the oxygen transfer rate into the oil, thus decreasing the degradation of 18:2, 

tocopherols, and the formation of oxidation products, such as HNE.
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CHAPTER 1. GENERAL INTRODUCTION 
 

 

Rationale and Overview 

The food industry utilizes hydrogenation to extend the frying life of oils. This process 

increases the saturation of the oil, but also isomerizes part of the naturally present cis 

double bonds in the fatty acids into the trans geometric isomer. Consumption of trans 

fatty acids has been linked to increased low-density lipoprotein cholesterol and decreased 

high-density lipoprotein cholesterol in human blood serum, and coronary vascular disease 

(1,2). Also during frying, polyunsaturated fatty acids oxidize and form degradation 

products with proven toxicity, such as 4-hydroxy-2-(E)-nonenal (HNE) (4). Starting 

January 2004 it became mandatory to label the content of trans fats in foods if they 

contain more than 0.5 g/serving (3). Thus, the industry is seeking ways to increase oil 

stability during frying without using partial hydrogenation and its consequential 

formation of trans fatty acids.  

Polydimethylsiloxane (PDMS) has been used as an antifoaming additive by the food 

industry; but, it can also protect oils at frying temperatures (180°C) when used at very 

low concentrations (7-9). Extensive work has been done to try to understand the 

mechanism by which PDMS exerts its protective effect (7, 10-13); however, the 

mechanism of action for PDMS is not yet fully understood. 

In this dissertation, understanding the protective mechanism of PDMS was approached 

by studying the influence of the PDMS concentration on the kinetics of the degradation 

of linoleate (18:2), the major fatty acid in soybean oil, and the degradation of the 
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tocopherols in soybean oil. Tocopherols, antioxidants naturally present in the oil, help to 

prevent oil degradation. Also, the influence of PDMS on oxygen uptake by the oil at 

different temperatures was evaluated. Finally, the formation and degradation of the 

potentially toxic HNE under different PDMS concentrations was studied. 

 

Dissertation Organization 

This dissertation contains a general introduction, which includes the research rationale 

and the literature review, followed by three papers and a general conclusion. The papers 

are presented in the required journal format (Journal of the American Oil Chemists’ 

Society). 

 

Literature Review 

Introduction  

Frying is a widely used process in the food industry. The fast and efficient heat transfer to 

the food and the unique flavors and texture developed by the food are reasons why this 

process is so popular. The type of oil used as frying medium is very important, especially 

because most of the flavor and aroma compounds are breakdown products formed during 

the heating of the oil. 

 

Oxidation and polymerization during frying 
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Heating the oil in the presence of oxygen results in oxidative reactions and 

polymerization of the unsaturated fatty acids. When food is introduced into the hot oil, 

other reactions, such as hydrolysis, also occur as the result of the interaction between the 

oil and the food components at high temperature. Oxidation typically comprises three 

stages: initiation, propagation, and termination (14) 

During initiation, an external factor (light, preexistent peroxides, redox metals) produces 

a free radical. In the case of frying oils, the main factor is the action of the temperature in 

the pre-existent lipid hydroperoxides (14). 

      I 

LH!L"        Initiation 

Where LH is an unsaturated lipid and I is the initiator. 

The second stage of the oxidation process is propagation. At this point, the radicals 

formed during the initiation stage combine with oxygen to yield peroxyl radicals. These 

peroxyl radicals can attack other unsaturated fatty acids to form more free radicals or they 

can extract a hydrogen from a fatty acid and yield a hydroperoxide. The hydroperoxide 

can break into two free radicals, which can propagate the reaction (peroxide 

decomposition): 

'"!(!)%!'))"!
!
'*!(!'))"!!'"!(!'))*! ! ! !! ! !!!!!!!!!+,-./0/1"-2!
The last stage is termination. At this point, the free radicals formed during previous 

stages react with each other to form non-radical products. Several types of products are 

formed: alcohols, aldehydes, ketones, hydrocarbons, dimers, trimers, and epoxides. Some 
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of them, such as aldehydes and ketones, can be further oxidized to acids (14). 

Many of these non-radical compounds have sensory properties and contribute to the fried 

flavor and aroma of the food. Depending on their concentration, however, they may also 

impart obnoxious flavors, typical of oxidized or rancid oil. The type of compound is 

directly linked to the structure of the precursor fatty acid. Some of these compounds are 

hexanal, trans, trans-2, 4-decadienal, trans-2-hexenal, trans-2-nonenal, trans-2-heptenal, 

furfural, 4-hydoxy-trans-2-nonenal, and nonanal (14). In general, the greater the 

proportion of unsaturated fatty acids, the more susceptible the oil is to oxidation. The 

relative rates of oxidation for the main fatty acids present in vegetable oil are oleic acid, 1 

(1 double bond); linoleic acid, 10.3 (2 double bonds); and linolenic acid, 21.6 (3 double 

bonds) (15). 

During frying, isomerization leading to the formation of conjugated double bonds and 

trans double bonds may occur. Cyclization also is possible, yielding five- or six-carbon 

cyclic compounds (16). The formation of polymers may occur independently of the 

presence of oxygen. If oxygen is present, cyclic compounds are usually formed during the 

termination stage of the autoxidation. If the radicals that originated the polymer contained 

oxygen, the polymer will contain oxygen in its structure. The presence of oxygen in the 

structure of a polymer increases its polarity. Polymerization also can occur as the result of 

heating through the Diels-Alder condensation mechanism as depicted by Figure 1 (17).  

Frying oils 

When choosing a frying oil one must consider several aspects, such as the type of fried 

product, consumer acceptance, nutritional factors, price and availability, oil stability, and  
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Fig. 1. Polymer formation through Diels-Alder condensation mechanism 
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sensory characteristics (18). In the past, partial hydrogenation of polyunsaturated oils was 

an economically feasible solution to increasing the stability of frying oils. Because of the 

negative health effects associated with trans fatty acids (1, 2) produced during the 

hydrogenation process, however, the food industry has tried to replace partially 

hydrogenated oils with more healthful products. The major seven vegetable oils produced 

in the world in the 2008/2009-crop season were palm oil (42.00 Mt), soybean oil (38.79 

Mt), rapeseed oil (18.71 Mt), sunflower oil (11.33 Mt), palm kernel oil (5.05 Mt), 

cottonseed oil (4.96 Mt), and peanut oil (4.94 Mt) (19). Their typical fatty acid 

compositions are presented in Table 1 (20).  

Palm oil is widely used in frying operations in industrial scale. Palm fatty acid 

composition is low in polyunsaturated fatty acids (9-12% 18:2 and <0.5% linolenic acid, 

18:3) making it very stable in high temperature applications (21). However, its high 

concentration of palmitic acid (16:0) (39.3- 47.5%) has raised concerns about consuming 

it because the intake of high amounts of 16:0 has been associated with 

hypercholesterolemia in humans (22). 

Palm oil can be fractionated into palm olein and palm stearin. Palm olein is the liquid 

fraction and palm stearin the high-melting point fraction (20). Palm olein is used as the 

main cooking oil in household applications in Malaysia (21). During frying, palm olein 

had stability similar to hydrogenated soybean, hydrogenated cottonseed, and 

hydrogenated sunflower oils (23) and better than corn and soybean oils (24). 

Typical commodity soybean oil is rich in polyunsaturated fatty acids (18:2 and 18:3), 

with some contributions from saturated and monounsaturated fatty acids (Table 1) (20).
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Table 1. Typical Fatty Acid Compositions of the major oils produced in the World in 2007/2008 (20) 

Fatty Acid Palm Soybean  Rapeseed  Rapeseed 
(low 22:1) 

Sunflower  Palm 
kernel oil 

Cottonseed 
oil 

Peanut oil 

Hexanoic (6:0) - - - - - <0.8 - - 

Octanoic (8:0) - - - - - 2.4-6.2 - - 

Decanoic (10:0) - - - - - 2.6-5.0 - - 

Dodecanoic (12:0) !0.5 !0.1 - - !0.1 45.0-55.0 !0.2 !0.1 

Tetradecanoic (14:0) 0.5-2.0 !0.2 !0.2 !0.2 !0.2 14.0-18.0 0.6-1.0 !0.1 

Hexadecanoic (16:0) 39.3-47.5 8.0-13.5 1.5-6.0 2.5-7.0 5.0-7.6 6.5-10.0 21.4-26.4 8.0-14.0 

Hexadecenoic (16:1) !0.6 !0.2 !0.3 !0.6 !0.3 !0.2 !1.2 !0.2 

Heptadecanoic (17:0) !0.2 !0.1 !0.1 !0.3 !0.2 - !0.1 !0.1 

Heptadecenoic (17:1) - !0.1 !0.1 !0.3 !0.1 - !0.1 !0.1 

Octadecanoic (18:0) 3.5-6.0 2.0-5.4 0.5-3.1 0.8-3.0 2.7-6.5 1.0-3.0 2.1-3.3 1.0-4.5 

Octadecenoic (18:1) 36.0-44.0 17-30 8.0-60.0 51.0-70.0 14.0-39.4 12.0-19.0 14.7-21.7 35.0-69 

Octadecadienoic (18:2) 9.0-12.0 48.0-59.0 11.0-23.0 15.0-30.0 48.3-74.0 1.0-3.5 46.7-58.2 12.0-43.0 

Octadecatrienoic (18:3) !0.5 4.5-11.0 5.0-13.0 5.0-14.0 !0.3 !0.2 !0.4 !0.3 

Eicosanoic (20:0) !1.0 0.1-0.6 !3.0 0.2-1.2 0.1-0.5 !0.2 0.2-0.5 1.0-2.0 

Eicosenoic (20:1) !0.4 !0.5 3.0-15.0 0.1-4.3 !0.3 !0.2 !0.1 0.7-1.7 

Eicosadienoic (20:2) - !0.1 !1.0 !0.1 - - !0.1 - 

Docosanoic (22:0) !0.2 !0.7 !2.0 !0.6 0.3-1.5 !0.2 !0.6 1.5-4.5 

Docosenoic (22:1) - !0.3 >2.0-60.0 !2.0 !0.3 - !0.3 !0.3 

Docoasdienoic (22:2) - - !2.0 !0.1 !0.3 -- !0.1 - 

Tetracosanoic (24:0) - !0.5 !2.0 !0.3 !0.5 - !0.1 0.5-2.5 

Tetracosenoic (24:1) - - !3.0 !0.4 - - - !0.3 
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The oil is suitable for many industrial and food uses. Based on relative oxidizability of 

the fatty acids present in soybean oil (15), the large proportions of 18:2 and 18:3 make 

soybean oil very susceptible to oxidation. Historically, soybean oil for frying applications 

has been partially hydrogenated to increase its stability. 
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Tocopherols and tocotrienols in soybeans and soybean oil 

Tocopherol and Tocotrienol Structures 

Tocopherols, also known as tocols, are compounds derived from 2-methyl-2-(4,8,12-

trimethyltridecyl)chroman-6-ol, and tocotrienols are compounds derived from 2-methyl-

2-(4,8,12-trimethyltrideca-3,7,11-trienyl)chroman-6-ol (52). Tocopherols and tocotrienols 

differ in that the terpenic side chain of the tocopherols is saturated, whereas the side chain 

of the tocotrienols contains three double bonds. The !-, "-, #-, and $-tocopherol analogs 

differ in the number and position of methyl substituents they contain (Fig. 2). 

Presence and Contents of Tocopherols 

Tocopherols exhibit antioxidant properties and contribute significantly to the oxidative  
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!-tocopherol R1= -CH3 R2= -CH3 R3= -CH3 

"-tocopherol R1= -CH3 R2= -H R3= -CH3 

#-tocopherol R1= -CH3 R2= -CH3 R3= -H 

$-tocopherol R1= -CH3 R2= -H R3= -H 

 

Fig. 2. Structures of tocopherols and different analogs present in soybean oil 
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stability of oils (53). Typical tocopherol concentrations for crude soybean oils, 

representing 14 lines of soybeans exhibiting conventional fatty acid compositions grown 

in the Midwest, are reported in Table 2 (54). Others have reported ratios of approximately 

1:13:5 for !-, #-, and $-tocopherols in soybean oils (55, 56). In general, tocotrienols were 

not detected in soybeans (57). 

Typical refining, bleaching, and deodorization of soybean oil decrease the total 

tocopherol concentration in the refined oil to 800-1100 ppm. In one study, however, the 

relative proportions of the tocopherol analogs were similar before and after processing 

(56). Chemical refining promoted greater tocopherol loss than physical refining and the 

loss of !-tocopherol was greater than that of the other analogs (58). The greater the 

temperature and the longer the deodorization and physical refining times the greater the 

tocopherol loss (59). 

 

Antioxidant and Vitamin Properties of Tocopherols 

Tocopherols, located in the plastids and thylakoid membranes of plants, protect the cell 

against highly oxidizing oxygen molecules produced during photosynthesis (60). The 

tocopherol analogs vary in their antioxidant activities, and the relative effectiveness 

varies with the conditions. For example, !-tocopherol had the highest relative in vivo 

antioxidant activity, followed in order by "-, #-, and $-analogs, whereas under in vitro 

conditions the results were variable (61). 

The in vivo vitamin E activity, as measured by Leth and Sondergaard (62) (rat resorption-

gestation test), paralleled the in vivo antioxidant activity (28). When each one of the four 
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Table 2. Tocopherol Concentrations (ppm) in Crude Soybean Oil from Soybeans Grown 

in the Midwest (21) 

 

 Meana Range 

!-Tocopherol 96 44-158 

"-Tocopherol 11 2-29 

#-Tocopherol 1048 926-1559 

$-Tocopherol 372 254-477 

Total 1527 1363-2195 
a n = 14 lines of soybeans. 
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analogs was tested separately in solution under 760 torr of oxygen at 30°C, the order did 

not differ from that obtained from in vivo conditions (63). When tested in in vitro systems 

of 18:2 and 18:2-methyl esters at 37 and 47°C, #-tocopherol was more stable than !-

tocopherol (64). Tocopherol stability and antioxidant activity were tested in corn oil 

heated at 70°C and aerated at 100 mL/min. The order of the antioxidant activity was #-

>$->"->!-tocopherol (65). When tested in menhaden oil at 37 and 50°C, both #- and $-

analogs had greater antioxidant capacity than !-tocopherol (66). In general, when tested 

in oils, fats, and lipoproteins, the order of the antioxidant activity was in the opposite 

direction from that obtained with in vivo studies, with the antioxidant activity being: $- > 

#-> "- and > !-tocopherol analogs (61). Temperature, light, and presence and 

concentrations of other pro- and anti-oxidants all impact the antioxidant effectiveness of 

the tocopherol analogs (67). 

 

 Effects of Tocopherol Levels on Soybean Oil Stability 

Optimal tocopherol concentrations to maximize oxidative stability in soybean oil were 

100, 250, and 500 ppm for !-, #-, and $-tocopherol, respectively, when tested individually 

in the dark at 55°C (67). Similarly, at temperatures ranging from 40 to 60oC in the dark, 

optimal concentrations for !- and #-tocopherols were ~100 and ~300 ppm, respectively; 

however, $-tocopherol did not exhibit an optimum concentration under these conditions 

(55). Tocopherol concentrations are critical, because the compounds can act as pro-

oxidants when in excess in the presence of other oxidation-promoting compounds, such 

as peroxides or metals (61). Indeed, at greater than optimal concentrations, individual 
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tocopherols and tocopherol mixtures were pro-oxidant, a behavior enhanced by 

increasing oil temperature from 40 to 60oC (55).  

Warner (68) tested tocopherol-stripped soybean and sunflower oils, to which pure 

tocopherols had been replaced in proportions typically found in these oils. At 60°C in 

darkness, soybean and sunflower oils with typical soybean tocopherol composition (low 

!- and high #- and $-) had better oxidative stabilities than did those with typical 

sunflower tocopherol composition (high !- and low #- and $-). In contrast, when tested in 

light conditions at 30°C, oils with high !-tocopherol (sunflower composition) were more 

stable than oils with high #- and $- (soybean composition) (68), likely a result of the 

higher capacity of the !-analog to prevent singlet oxygen oxidation (17, 68). In another 

study, mid-oleic sunflower oil was stripped of the tocopherols and different combinations 

of !-, #-, and $-tocopherols were added and used to fry tortilla chips. Both #- and $-

tocopherols were responsible for decreasing the contents of total polar compounds in the 

oil as well as decreasing the content of hexanal in the stored chips. Also the percentage of 

retention of the tocopherols in the oil after 6 h frying was $ > # > ! (69).   

 

Polydimethylsiloxane 

Polydimethylsiloxane (PDMS) is a silicon-based polymer and has been extensively used 

by the food industry as an anti-foaming agent because of its low surface tension 

properties (6). PDMS at very low concentrations also has protective effects on frying oils 

(6-9). Many studies have tried to explain the cause of this protective effect of PDMS in 

frying oils, however, the mechanism is not entirely clear. 



www.manaraa.com

!

!

M>!

!!!!!M>!

Freeman et al (7) studied the effect of PDMS concentration in frying oil (sunflower oil). 

There was no protective effect of PDMS in the percentage of unoxidized triglycerides at 

concentrations below 0.05-0.06 µg PDMS/cm2. In this study, the monomer area on the 

surface of the oil was 20 to 25 Å2 (7, 70), and represented the minimum effective 

concentration necessary to form a monolayer of PDMS if all the PDMS was assumed to 

be on the surface.  

The effect of PDMS seems to be dependent on its insolubility in the frying oil. When fat-

soluble silicone polymer modified with fatty acids was evaluated vs. PDMS, there was no 

protective effect in the oil treated with the fat-soluble polymer. Also, the protective effect 

of PDMS improved with increasing viscosity. In general, only PDMS types with a 

viscosity > 20 cs were effective (10). 

PDMS has been proposed to alter convective currents in the surface of the oil. Kusaka et 

al (11) studied the disappearance of a drop of Sudan-III-colored soybean oil when adding 

it to oil with and without PDMS. The color disappeared faster in the oil without PDMS. 

Later, Ohta and collaborators (12) observed a ~20°C decrease on the surface of oil treated 

with PDMS compared to the temperature in the interior of the bulk oil. They attributed 

this temperature decrease to the inhibition of surface convective currents by PDMS. 

Indeed, in other work, the presence of PDMS changed the infrared absorbance spectrum 

in tung oil (13). To further understand the role of the convection currents on the effect of 

PDMS, high-linoleate sunflower and high-oleate sunflower oils were heated in an oven 

and on a hotplate. For both oils, the addition of PDMS decreased the formation of polar 

compounds when the oil was heated on the hotplate. However, there were no differences 

between PDMS- treated and non-treated oil when heated in an oven (71).  
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The effect of PDMS addition to a frying oil was also evaluated during continuous and 

discontinuous frying. The protective effect was stronger during discontinuous frying; the 

formation of polar compounds was lesser when PDMS was added (72, 73). Similarly, the 

contents of tocopherols were higher in PDMS-treated oil than in untreated oil during 

discontinuous frying (72). 

The role of PDMS in preventing oil deterioration during frying is not totally understood. 

The effect of PDMS on the convective currents of an oil surface may be part of its 

protective mechanism. Freeman et al (7) suggested that PDMS might also accumulate on 

the surface of the oil and form a physical barrier that prevents the entrance of oxygen into 

the oil, thus decreasing oxidation. 

According to the World Health Organization, the acceptable daily intake of PDMS is up 

to 1.5 mg/kg of body weight (74) and the maximum allowed in foods by the FDA is 10 

ppm (75). The amount of PDMS absorbed in fried potato chips increased exponentially 

with increasing PDMS contents in the frying oil (7). PDMS is used in frying oils in 

concentrations of ~5 ppm in the oil. If 300 g potato chips were fried in 1 L of oil treated 

with 5 ppm PDMS, the actual PDMS concentration in the food would be 2 ppm (7).  For 

a 60-kg person it would be necessary to consume 45 kg of potato chips to meet the daily 

maximum of 1.5 mg/kg of body weight. 

PDMS is thought to degrade by depolymerization and cross-linking at high temperatures. 

In the presence of air, thermal gravimetric analysis of PDMS indicated that thermal loss 

started at 290°C (76, 77). Two mechanisms were proposed for the thermal degradation of 

PDMS. The first mechanism led to depolymerization through the scission of the Si-O 
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bond and the formation of cyclic compounds. The second mechanism proceeded through 

the formation of free radicals from the hemolytic scission of the Si-CH3 bonds (77) and 

led to cross linking and loss of flexibility of the polymer chains. Indeed, the use of free 

radical-forming peroxides, such as benzoyl peroxide, was previously proposed as a curing 

method for silicone rubber, via a cross linking mechanism (78). 

 

Oxygen solubility in oil   

In general, the solubility of oxygen in oils increases with increased temperatures, between 

0 and 100°C (79-81). Oxygen solubility in soybean oil at 20°C was measured at 1 

atmosphere (atm) air and was 0.055 mg/g (82). In the case of olive oil, the solubility of 

oxygen was 0.035 mg/g when measured at 25°C and 1 atm air (81). 

Oxygen pressure over frying oils is an important factor in determining the extent of oil 

oxidation at frying temperatures (83).  A decrease in 0.05 atm in the atmospheric pressure 

over oil heated at 180°C decreased the formation of polar compounds by ~50%. Also, 

when frying was done under a stream of nitrogen, the quality of the oil after 5 h of frying 

was better than when the frying was done in air atmosphere (83). 

 

4-Hydroxy-2-(E)-nonenal 

During oxidation of polyunsaturated fatty acids, many compounds are formed: aldehydes, 

ketones, acids, and hydrocarbons are some of those. The compounds formed are 

characteristic of the fatty acid from which they are produced (14). One of the 



www.manaraa.com

!

!

MQ!

!!!!!MQ!

characteristic products of linoleate (18:2) degradation is 4-hydroxy-2-(E)-nonenal (HNE). 

This hydroxyaldehyde has been the subject of much research because of its toxicity and 

physiological functions (84). 

4-Hydroxynonenal has three functional groups, which are responsible for its great 

reactivity. The carbon-carbon double bond conjugated with a carbonyl group induces a 

partly positive charge on carbon 3, which is further accentuated by the influence of the 

hydroxy group on carbon 4. As a result, HNE is susceptible to nucleophilic attacks by 

electronegative groups, such as thiol or amino groups, primarily on carbon 3 and 

secondarily on carbon 1 (85). 

The carbon-carbon double bond can react with thiol groups (from cysteine or glutathione) 

and through the Michael addition reaction mechanism, be reduced to yield 4-

hydroxynonanal, or even be oxidized to form epoxides (85). The carbonyl group can also 

react with alcohols and thiols to form hemiacetals ot hemithioacetalas and continue 

further to yield acetals or thioacetals. If the double bond has undergone a reaction that 

converts it to a free rotating bond (reduction or Michael addition), an internal hemiacetal 

can be formed by the reaction of the aldehyde group and the hydroxy group in position 4. 

Another important reaction is the formation of a Schiff base from the reaction of the 

carbonyl group with a primary amine. This reaction is very common during cross linking 

of proteins by HNE. The carbonyl group can also oxidize or reduce to yield an acid or an 

alcohol, respectively. Finally, the hydroxy group can undergo oxidation to yield a ketone 

(85). 

4-Hydroxynonenal is highly reactive towards proteins, lipids (especially phospholipids), 
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co-factors, vitamins, and nucleic acids, both by Michael addition and Schiff-base 

formation (86). At least 39 human diseases have been linked to the presence of HNE, 

including AIDS, atherosclerosis, chronic hepatitis B and C, diabetes mellitus, multiple 

sclerosis, Alzheimer’s disease, and acute myocardial infarction (86). Deoxyribonucleic 

acid (DNA) background lesions caused by reaction with HNE were found in healthy rat 

and human colon and liver tissues (87). Toxicity has been established for cell cultures at 

the following levels and severity: > 100 µM HNE produces a rapid citotoxic effect 

leading ultimately to cell death; 1 to 20 µM HNE can inhibit protein synthesis; and 

<0.1µM HNE are probably normal basal HNE tissue concentrations (88, 89).  

There is no data in the literature reporting dietary HNE absorption, however several 

studies show that fatty acid oxidation secondary products are absorbed (90-92), especially 

!,"-unsaturated aldehydes (91). When rats were fed !,"-unsaturated aldehydes (trans-2-

nonenal and trans-2-pentenal), the aldehydes were absorbed, metabolized through 

addition of glutathione, and their metabolites excreted in the urine (91). When rats were 

fed thermally oxidized safflower oil (0.30 ml/day) during gestation the percentage of 

embryo malformations increased three times. Feeding unheated safflower oil also 

increased the percentage of embryo malformations, probably because of the presence of 

detectable lipid oxidation products in the oil, although the impact was less than that from 

the thermally oxidized safflower oil. The administration of !-tocopherol as a supplement 

helped reduce the incidence of the highly oxidized safflower oil in the percentage of 

embryo malformations (92). The HNE content in different Korean foods was evaluated 

and the daily intake of HNE calculated based on the Korean 2001 National Health and 

Nutrition Survey. The mean calculated intake was 16.1 µg/day (93). 
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4-Hydroxynonenal formation in heat-abused soybean oil also has been studied. When 

soybean oil was heated at 185°C in a round bottom flask with constant air bubbling, the 

HNE concentration increased rapidly in the beginning followed by a decrease after 

reaching a maximum concentration. The maximum HNE concentration (0.27 µmol/g oil) 

occurred after 6 h of heating (4). In another study, where pure methyl linoleate was 

heated at 185°C, the maximum HNE concentration occurred after 3 h of heating (0.54 

µmol/g FAME) and then it decreased (61). Another study reported the presence of 0.021 

µmol HNE/g oil after heating soybean oil in an open beaker for 8 h with constant air 

bubbling (5). 4-Hydroxynonenal accumulation was studied during continuous and 

discontinuous heating. There were no differences in the concentration of HNE among the 

treatments (95). 

 

Analytical procedures for fat degradation determination 

The work accomplished in this dissertation required the use of many different analytical 

procedures.  In many instances, there were several choices of techniques to use. An 

overview of these procedures is discussed. 

Linoleate degradation 

The degradation of 18:2 in an oil can be monitored by transesterification of the 

triacylglycerides into fatty acid methyl esters (FAME) (96). The FAME composition is 

analyzed by gas chromatography with flame ionization detection (97). When the fatty 

acids present in the oil are larger than twelve carbons the percentage area for each peak 

FAME is very close to the mass percentage of the FAME in the mixture (97). Palmitic 
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acid is not degraded during frying conditions, thus it is usual to report the disappearance 

of unsaturated fatty acids as the ratio of the percentage area of the fatty acid relative to 

that of 16:0 (9, 48, 50). 

Tocopherol disappearance 

High-performance liquid-chromatography is the most commonly used method to 

determine the concentration of tocopherols in oils. In general, spectrophotometric 

detection is used at 292 nm (UV) (97). Fluorescence detection can also be used with 

excitation at 290 nm and emission at 325 nm (98, 99). The use of fluorescence detection 

improves sensitivity and specificity by discriminating among co-eluting components (98). 

 

Oxygen concentration 

Several methods have been proposed for determining the oxygen concentration in oils. A 

complicated method based on volume displacement is described by Battino et al (81). 

Because of the requirements of temperature uniformity this method is impractical for use 

under frying conditions. Another method uses gas chromatography with thermal 

conductivity detection (100). The oil is injected in a glass chamber containing glass wool, 

and a stream of helium desorbs the gases dissolved in the oil at 150°C. This chamber is 

connected to the chromatographic column where they are separated and measured in the 

detector. The disadvantage of this approach is that during desorption of the gases at 

150°C, oxygen reacts very quickly with polyunsaturated fatty acids and the actual 

concentration of oxygen may be underestimated. A method using mass spectrometry was 

described by Snedden et al (101). In this method, the oil is contained in a thermostatically 
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controlled syringe and exposed to a volume of oxygen. After equilibration, the headspace 

in the syringe is injected into a mass spectrometer and the oxygen concentration 

measured. Temperatures and conditions used during frying make this approach 

impractical to use. Parenti et al (102) used a portable polarographic oxygen analyzer to 

determine oxygen concentrations in olive oil. This principle was adapted for use under 

frying conditions as explained later in this dissertation. 

4-Hydroxy-2-(E)-nonenal determination 

The high reactivity of HNE makes it difficult to measure in oxidized oils. Several 

methods have been described to determine HNE concentration in oils. All of them require 

derivatization of HNE to improve extraction and increase stability of the compound 

during the analysis. Seppanen and Csallani (4) determined HNE by HPLC. They 

derivatized the aldehydes in the oil to dinitrophenyl hydrazones (DNPH). The DNPH 

derivatives were separated by thin-layer chromatography and the high polarity band was 

extracted and analyzed by HPLC with detection at 378 nm. The elution was done using a 

50:50 mix of water:methanol as the starting solvent, followed by a linear gradient to 

100% methanol in 40 min (4).  

Another method utilizes gas-chromatography mass-spectrometry (GC-MS) to determine 

the concentration of HNE in oils (88). This method requires addition of an internal 

standard (deuterated HNE) to the oil (103). To remove HNE, the oil is extracted with 

water, followed by derivatization of the carbonyl groups with pentafluorobenzyl 

hydroxylamine to form pentafluorbenzyl (PFB) oximes. The PFB oxyimes are extracted 

with pentane and the hydroxy group is treated with ./0!l;.1!C-0.6'-3%,1.,%,K!
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-0.5,+$0$(*'-(6.4'!C;#=[DK!()4!-0.6'-3%,*3,$0$1.,()'!C=bU#K to form a trimethyl 

silyl derivative (TMS). The derivatized extract is diluted with methylene chloride and 

analyzed by GC-MS using a non-polar DB-5 capillary column. If positive-electron-

impact MS is used, the derivatized HNE yields three characteristic mass-to-charge 

fragments (m/z): 226, 242, and 352. The m/z fragments of the deuterated internal standard 

would depend on the number of deuterium atoms in the molecule and their position. In 

general, m/z=352 is common to both HNE and the internal standard, thus it is only used 

for identification. The rest of the m/z are used for quantification (104). Other researchers 

have proposed the inclusion of a purification step by solid-phase extraction using a C-18 

silica cartridge before the PFB derivatization (93). This step can help to clean the extract, 

however, it is impractical when a large number of analyses are required. 

 

Justification for work and objectives: 

The effect of PDMS on fatty acid degradation during frying is poorly understood. 

Soybean oil, and particularly the 18:2 and 18:3, is very susceptible to oxidation at 

elevated temperatures, thus it is an appropriate substrate in which to evaluate the 

protective effect of PDMS and to facilitate the study of the kinetics of oil degradation at 

frying temperatures. Also, evaluation of the disappearance of tocopherols in an oil can 

contribute to understanding the protective mechanism of PDMS. Finally, understanding 

the exchange of oxygen between oil and the atmosphere in the presence of PDMS during 

frying is crucial. Thus, the effect of PDMS on the concentration of oxygen in the oil as 

well as on the formation of oxygenated degradation products, such as HNE, needs to be 
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evaluated. The objectives of the work in this dissertation were to: 

1. Determine the effect of PDMS concentrations on the kinetic parameters of the 

disappearance of 18:2 and tocopherols at frying temperature. 

2. Determine the effect of PDMS presence on the oxygen concentration of soybean 

oil at various temperatures. 

3. Determine the effects of PDMS concentration on the kinetic parameters of the 

formation and disappearance of HNE, an oxygenated product of 18:2 oxidation. 
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Abstract 

Soybean oils treated with 5, 10, 25, 50, and 100 ppb polydimethylsiloxane (PDMS) and a 

control soybean oil (no PDMS) were heated at 180°C for 48 h. The decomposition of 

linoleate (18:2) and tocopherols was monitored. The degradation of 18:2 and both #- and 

$-tocopherols followed pseudo first-order kinetics. For 25 ppb PDMS (the concentration 

necessary to form a PDMS monolayer on the air-oil interface) and greater concentrations, 

18:2 degradation decreased in rate, with a subsequent increase in slope during 48 h of 

heating.  The same trend occurred for the degradation of both #- and $-tocopherols, but 
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the change in rates of degradation was observed also in the 10 ppb PDMS treatment. For 

treatments with PDMS concentrations similar to that needed to provide a monolayer 

concentration, the rates of degradation after the change were similar to the rate of 

degradation of the control oil, and in general, the changes occurred later at higher PDMS 

concentrations. The occurrence of these changes in rates of degradation was likely related 

to the time at which tocopherols were no longer effective in preventing oil degradation 

and when the PDMS was sufficiently degraded to lose its protective effect. 

Keywords: polydimethylsiloxane, tocopherol, soybean oil, frying, kinetics 

 

Introduction 

Oils subjected to frying temperatures undergo a variety of degradation reactions, most of 

which are oxidative. Oils with a fatty acid composition rich in polyunsaturated fatty acids 

are greatly affected by these oxidative reactions. Polydimethylsiloxane (PDMS), a 

silicon-based polymer, is widely used by the food industry as an anti-foaming agent. The 

use of PDMS in very low concentrations in frying oils has a protective effect on the oil 

(1). 

Extensive research has been done on the mechanism by which PDMS protects oil against 

degradation during frying (1, 2). Likely, PDMS viscosity impacts the effectiveness. Low 

viscosity PDMS (less than 5 centistokes) did not have a protective effect, whereas PDMS 

with viscosities between 20 and 100 cs were protective (1, 2). The protective effect also 

has been associated with the ability of PDMS to affect the oil-air interface of a frying oil. 

The minimal effective PDMS concentration is estimated to be 0.05-0.06 µg/cm2 of the 
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air-oil surface area (3). 

Two mechanisms to explain the PDMS protective action on frying oils have been 

proposed. The first deals with inhibition of convective currents on the surface of the oil, 

with a consequent reduction of oxidation. The second proposed mechanism suggests the 

accumulation of PDMS on the air-oil interface acts as a barrier to oxygen diffusion, thus 

inhibiting free radical propagation, or by acting as a relatively inert surface to oxidation 

(3). 

The impact of PDMS on the rate of degradation of linoleate (18:2) in soybean oil at 

180°C was reported (4). The initial rate of 18:2 degradation in oil treated with PDMS was 

lower than for pure soybean oil (control). After 12 h at 180°C degrees the rate of 18:2 

degradation in the PDMS-treated oil became the same as that for the control.  

Tocopherols are antioxidant compounds naturally present in vegetable oils. Tocopherol 

retention in frying oils is important to the storage life of the fried products. Tocopherols 

are carried over to the fried product and protect it from oxidation during storage (5). 

Soybean oil is particularly rich in #- and $-tocopherols, with #-tocopherol having stronger 

antipolymerization properties in frying oils than !-tocopherol (5, 6). Thus, tocopherol 

degradation is an important factor to be considered when evaluating oil protective agents. 

The effect of the concentration of PDMS on the degradation rate of 18:2 and tocopherols 

has not been studied. Thus, the objective of this study was to determine the impact of 

PDMS concentration on the degradation rate of 18:2 and of tocopherols in soybean oil 

held at frying temperature (180°C), and to understand the protective mechanism of 

PDMS on frying oils. 
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Experimental Procedures 

Oil heating and sampling: Refined, bleached, and deodorized soybean oil with citric acid 

added (Golden Chef) was obtained from Archer Daniels Midland Company (Decatur, IL).  

The oils (200 g) were heated in a 100 x 50 mm crystallizing dish (Pyrex, Corning Inc., 

Corning, NY) for 48 h at 180°C. The initial surface-to-volume ratio was 0.36 cm-1. The 

PDMS was food-grade Dow Corning 200, 350 cs (Dow Corning Co., Midland, MI). 

Treatments:  Treatments containing selected concentrations of PDMS were prepared. A 

stock solution containing 100 ppm of PDMS in hexanes was prepared, appropriate 

amounts were added to the crystallizing dishes and the solvent evaporated before adding 

the oil. All the treatments were heated simultaneously, in two separate replicates of each 

treatment (blocking factor). Oil aliquots (2 ml) were removed every 2 h for further 

analysis and stored in glass vials at -22°C. The oil removed was not replenished.  

Previous research showed that the minimum efficient concentration of PDMS on the 

surface of oil heated at 180°C was 0.05-0.06 µg/cm2 (3). Considering a PDMS monomer 

surface area of 20-25 Å2 (7) and assuming that at 180°C practically all PDMS is at the 

oil-air interface, the concentration necessary to have a theoretical PDMS monolayer in 

the system was calculated (Eq. 7). This calculated monolayer concentration was ~25 ppb 

in the oil. Oil treatments included two PDMS concentrations greater than the monolayer 

concentration (100 and 50 ppb) and two less than (10 and 5 ppb), the monolayer 

concentration (25 ppb PDMS), and a control (no PDMS). 

  (Eq. 7)
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where mwmonomer  is 74.1 g/mol, the area of the container is 7850 mm2,  the area of the 

monomer is 20 Å2, massoil is 200 g, NA is Avogadro’s number, and the result is converted 

to ppb by multiplying by a suitable factor (1E23).    

Fatty acid composition: Oil aliquots were converted to fatty acid methyl esters (FAME) 

(8).  The FAME were injected in a Hewlett-Packard 5890 Series II chromatograph with a 

flame ionization detector and split/splitless injector. A 15 m x 0.25 mm x 0.2 µm film SP-

2330 silica capillary column (Supelco, Bellefonte, PA) was used. The chromatographic 

parameters were: injector temperature, 230°C, detector temperature, 230°C, oven 

temperature program, 150 to 180°C at 5°C/min with no holding time. The carrier gas 

(He) was set at 5.4 mL/min, the auxiliary gas (He) at 19.4 mL/min, H2 at 13.9 mL/min, 

and air at 426 mL/min. The split ratio was 24:1. The FAME composition was expressed 

as uncorrected relative area percentages of the detector output. Oil degradation 

throughout the heating time was evaluated by assessing the disappearance of methyl 

linoleate (18:2) by using methyl palmitate (16:0) as a naturally present internal standard 

(4). The linoleate-to-palmitate ratios (18:2/16:0) were calculated and the natural 

logarithm of the 18:2/16:0 ratios were plotted vs. time (Eq. 1). The slopes of the linear 

regressions were estimated and used as a measure of the rate of the 18:2 disappearance.  

Ln(18:2/16:0) = Ln(18:20/16:00) - k1 t     (Eq.1) 

where 18:20/16:00 is the linoleate to palmitate relative concentration in the fresh oil (time 

0), k1 is the rate constant, and t is the time in hours. 

If there was a point of change in the rate of degradation, the kinetic model was split into 

two pseudo first-order kinetics (before and after the change; Eq. 2 & 3): 
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Ln(18:2/16:0) = Ln(18:20/16:00) - k1 t     t%T (Eq. 2) 

Ln(18:2/16:0) = Ln(18:20/16:00) - k1 T - k2 (t – T)   t>T (Eq. 3) 

where k2 is the rate of reaction after the change in the rate of degradation, and T is the 

time at which the change in the rate of degradation occurs.   

Tocopherol content: Accurately weighed oil amounts were diluted with hexane to obtain 

0.1 g/mL solutions, and analyzed by HPLC by using a Beckman Coulter System Gold 

(Beckman Coulter Inc., Fullerton, CA) equipped with a 25 cm x 4.6 mm 5µ 60Å 

LiChrosorb Silica column (ES Industries Chromega Columns, West Berlin, NJ) with UV 

detection at 292 nm. The column was eluted with isopropanol:hexane (5:95 v/v) and the 

flow was set at 0.7 ml/min. The concentrations of the various tocopherols were expressed 

in ppm and external standards were used for quantification. In a manner similar to the 

calculations used for 18:2 degradation, the natural logarithm of !- and "-tocopherol 

concentrations were plotted vs. time and the slopes of the linear regressions calculated 

and used as an estimate of the rate of disappearance of the tocopherol types (Eq. 4). 

Ln(tocopherol) = Ln(tocopherol0) - k1 t     (Eq. 4) 

where tocopherol0 is the ln of the # or $-tocopherol concentration in the fresh oil (time 0), 

k1 is the rate constant, and t is the time in hours. 

If there was a change in the rate of degradation, the kinetic model was again split into two 

pseudo first-order plots, that is before and after the change in the rate of degradation (Eq. 

5 and 6). 

Ln(tocopherol) = Ln(tocopherol 0) - k1 t    t%T (Eq. 5) 
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Ln(tocopherol) = Ln(tocopherol 0) - k1 T + k2 (t – T)  t>T (Eq. 6) 

where k2 is the rate constant after the change in rate of degradation and T is the time at 

which the change occurred. 

Kinetics model parameters estimation:  The parameters were estimated using GraphPad 

Prism software version 4.03 for Windows (GraphPad Software, San Diego, CA) and all 

the regression curves fitted had an R2 & 0.9 unless otherwise indicated. 

Statistical analysis: The slopes were analyzed by using analysis of variance (ANOVA) 

with the PROC GLM of SAS 9.1 software (SAS Institute Inc., Cary, NC). Comparisons 

were assessed by contrasts using Tukey’s adjustment for multiple comparisons. The level 

of significance was set at #=0.05 unless otherwise indicated. 

 

Results and Discussion 

Linoleate disappearance 

The degradation during frying of 18:2, the major fatty acid in conventional soybean oil, 

was previously documented and a first-order kinetics was fitted as the most appropriate 

(4). During continuous heating of soybean oil in the presence of PDMS, the rate of the 

reaction accelerated at a certain time (the point at which the slope of the plot changed), 

and thereafter, the 18:2 degraded at the same rate as 18:2 in pure soybean oil (4).  

In the current study, the rate of degradation changed at a specific time, after which, the 

rate of 18:2 disappearance accelerated for PDMS concentrations equal to or greater than 

the calculated PDMS monolayer concentration (25 ppb). Figure 1 illustrates the 
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disappearance of 18:2 and shows plots for each PDMS concentration. For 100 ppb of 

PDMS, the rate after T was lower than that of the slope of the control oil. The rates after 

T for the calculated monolayer concentration (25 ppb PDMS) and for 50 ppb PDMS were 

not different from the rate of the control oil. For concentrations of PDMS below the 

monolayer concentration no change in rate was found. For a PDMS concentration of 5 or 

10 ppb, the rate of 18:2 degradation was not different from that of the control (pure 

soybean oil) (Table 1).  In a previous paper (4) rates after the point of change were 

similar to those of their control oils even though the PDMS concentrations were much 

greater (5 and 10 ppm), but the approximate surface to volume ratio also was greater 

(0.92 cm-1 compared to 0.36 cm-1 in the present experiments). In a typical commercial 

deep-fat fryer (#-(0!=2.)!c$-!4''7B5(-!50%'01J!6$4',!L@H=DJ!#-(0!b()+5(*-+0.)8!

\)-'0)(-.$)(,!\)*:!#-:!Y$+.1J!bh) the surface-to-volume ratio is much less, ~0.1cm-1. 

 

Tocopherol degradation 

 The #- and $-tocopherols were monitored during oil heating. Interfering compounds 

eluted at the same retention time as !-tocopherol; thus, it could not be measured 

accurately. Because the !-tocopherol is present in small concentrations in soybean oil (9) 

and is not the most potent antioxidant in soybean oil (10), the omission is likely not 

important to the findings in the current study.  The #- and $-tocopherols were determined 

until concentrations became so low that co-eluting oxidation compounds interfered with 

their quantification. 

Changes in the rates of #- tocopherol degradation were found for PDMS concentrations of 
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10 ppb and above (Fig. 2). In the samples treated with 50 and 100 ppb of PDMS, the rate 

after T was not as great as that of the control. For 25 ppb, the calculated PDMS 

monolayer concentration, and 10 ppb, the degradation rate of #-tocopherol after T was not 

different from that of the control. For 5 ppb of PDMS no change in rate was found. The 

rate changes tended to occur later as the PDMS concentration increased. 

The $-tocopherol degradation occurred at a slower rate than # as shown in Tables 2 and 3. 

This pattern agrees with Barrera-Arellanos et al. (11) and confirms the greater resistance 

of $-tocopherol compared with #-tocopherol to high-temperature oxidation.  

Similar to #-tocopherol, degradation of $- tocopherol at PDMS concentrations >10 ppm 

followed pseudo first-order kinetics until a time where the reaction accelerated (Fig. 3). 

The rate of $-tocopherol disappearance after T was not different from that of the control 

oil. In treatments with 5 ppb PDMS no change of rate was observed, and the rate of the 

reaction was not different from that of the control oil. In the oil treated with 25 ppb 

PDMS, T was similar to that of #- tocopherol; however, at PDMS concentrations greater 

than the monolayer concentration, the time at which the degradation of $-tocopherol 

accelerated, was later than for #-tocopherol. 

At the monolayer concentration of PDMS (25 ppb), the 18:2 and #- and $- tocopherol 

degradation plots all had similar T, and the rates of oxidation of all three substrates 

increased to match the rate of the control soybean oil.  These changes in the rates of 

oxidation suggest that, at this time, the PDMS had become ineffective, probably because 

of degradation at high temperatures (12).   

The relationship between the rates of degradation of 18:2 and tocopherols before any 
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change in rate (k1) and the initial concentrations of PDMS also was studied. For the 18:2 

degradation, a plateau was observed at concentrations of up to 10 ppb PDMS. At greater 

concentrations, the rate of disappearances of 18:2 decreased exponentially. For both #- 

and $-tocopherols, the rates of degradation decreased exponentially with increasing 

PDMS concentrations, although no plateau was observed. For both tocopherol types, the 

influence of the concentration of PDMS on the rates of degradation was similar (Fig. 4). 

The addition of 100 ppb PDMS in the oil decreased the rate of degradation of both 

tocopherols and 18:2 by about ~83-87%, compared to the untreated oil. However, 

because of the exponential type of decay, the use of PDMS concentrations greater than 

100 ppb (in this system) likely would have a minor additional impact on the reduction of 

the degradation rates. The absence of a plateau in the tocopherol degradation could be 

related to the greater reactivity of tocopherols compared to 18:2 and the greater 

variability of the tocopherol degradation rates at very low PDMS concentrations (Fig. 4).  

Although color and viscosity were not measured in a systematic fashion, in all cases, the 

oils clearly became progressively darker with time as observed by the authors, with the 

darkening being faster at lower PDMS concentrations. Oil viscosity showed a similar 

trend. There was a progressive thickening with time, and this thickening was more 

obvious at low PDMS concentrations. 

 

Conclusions 

The protective effect of PDMS in high-temperature oil systems was demonstrated by the 

decrease in the rate of disappearance of 18:2, and $-, and #-tocopherols. The PDMS effect 
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was evident at concentrations equal to or greater than the calculated monolayer 

concentration (25 ppb PDMS), suggesting that PDMS accumulated in the surface of the 

oil where it possibly acted as a barrier to oxygen transfer into the oil. 

At greater PDMS concentrations, such as 50 and 100 ppb, the change in rate of 

tocopherol disappearance occurred later than in the treatment with 25 ppb, and the 18:2 

oxidation rate after the change of rate was slower than in that of the control oil. This 

difference in rates suggests that the tocopherols controlled the occurrence of the changes 

in rate, and the slower rate of 18:2 oxidation was caused by the PDMS still being at an 

effective concentration.   

In general, the loss of #-tocopherol was faster than that of the $-tocopherol. This 

difference in the rate of degradation suggests that #-tocopherol was more susceptible to 

oxidation than $-tocopherol, and spared the oxidation of the $-until the #-tocopherol 

reached a concentration where it no longer controlled the rate. 

These results indicate that the slope of the logarithm of the disappearance of 18:2 and the 

times of changes of slopes may be good measures of the effectiveness and duration of 

antioxidants and other oxidation inhibitors in frying oils.   
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Table 1 The time of change in rates (T) and rates of ln(18:2/16:0) vs. time in soybean oil 
with various amounts of PDMS  heated to 180oC 

Treatment 
(ppb PDMS) 

Mean T 
(h) 

Mean rate before change 
(k1) 

Mean rate after change  
(k2) 

0 Control - 0.0139w 0.0139w 
5 - 0.0141w 0.0141w 
10 - 0.0141w 0.0141w 
25 13w 0.0080a, x

 

0.0135b, w 

50 21w 0.0046a, y
 

0.0121b, w 

100 17w 0.0023a, z 0.0049b, x 
 
a-b Different superscripts in the same row indicate significant differences at p<0.05 
w-z Different superscripts in the same column indicate significant differences at p<0.05 
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Table 2 The time of change in rates (T) and rates of ln(#-tocopherol) vs. time in soybean 
oil with various amounts of PDMS at 180oC 

Treatment 
(ppb PDMS) 

Mean T 
(h) 

Mean rate before change 
(k1) 

Mean rate after change (k2) 

0 Control - 0.4852x 0.4852x 

5 - 0.4003x 0.4003xy 
10 7x 0.2486a, y

 

0.4578b, x 

25 11x 0.1788a, yz
 

0.3968b, xy 

50 13x 0.0756a, z
 

0.2380b, yz 

100 26x 0.0597a, z 0.2068b, z 
 
a-b Different superscripts in the same row indicate significant differences at p<0.05  
x-z Different superscripts in the same column indicate significant differences at p<0.05 
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Table 3 The time of change in rates (T) and rates of ln($-tocopherol) vs. time in soybean 
oil with various amount of PDMS at 180oC 

Treatment 
(ppb PDMS) 

Mean T 
(h) 

Mean rate before change 
(k1) 

Mean rate after change 
(k2) 

0 Control - 0.1390x 0.1390x 
5 - 0.1710x 0.1710x 
10 5x 0.0604a, xyz

 

0.1211b, x 

25 10x 0.0467a, yz
 

0.1143b, x 

50 19x 0.0287a, yz
 

0.1480b, x 

100 35y 0.0217a, z 0.1444b, x 
 
a-b Different superscripts in the same row indicate significant differences at p<0.05  
x-z Different superscripts in the same column indicate significant differences at p<0.05 
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Fig. 1 Semi logarithmic plots of the 18:2/16:0 ratio vs. time of soybean oil without added 
PDMS (control) and of soybean oil treated with 5, 10, 25, 50, and 100 ppb PDMS and the 
curves generated from the mean of the parameters of the respective fitted curves  
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Fig. 2 Semi logarithmic plots of the [#-tocopherol] vs. time of soybean oil without added 
PDMS (control) and of soybean oil treated with 5, 10, 25, 50, and 100 ppb PDMS and the 
curves generated from the mean of the parameters of the respective fitted curves 



www.manaraa.com

!

!

EH!

!!!!!EH!

 

 

Fig. 3 Semi logarithmic plots of the [$-tocopherol] vs. time of soybean oil without added 
PDMS (control) and of soybean oil treated with 5, 10, 25, 50, and 100 ppb PDMS (rep 2 
of the 5 ppb PDMS treatment had R2=0.7) and the curves generated from the mean of the 
parameters of the respective fitted curves
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Fig. 4 Relationship between initial degradation rates (k1) for 18:2 and #- and $-
tocopherols vs. [PDMS] and their respective coefficients of determination 
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Abstract 

The effect of temperature on the oil oxygen concentration, tested in both soybean and 

olive oils with no added polydimethylsiloxane (PDMS), showed that the oxygen 

concentration increased with temperature to approximately 100°C. Above 100oC, the 

oxygen concentration abruptly decreased. This change was attributed to the balance 

between the rates of oxygen uptake and consumption by oil oxidation, which favored 

oxygen consumption over uptake at temperatures above 100°C. The addition of 100 ppb 

PDMS to soybean oil, enough to form a continuous layer over the surface of the oil,  

reduced the oxygen concentration when compared to a soybean oil control containing no 

added PDMS at  temperatures ranging from 93 to 180°C; thus suggesting an oxygen 
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barrier effect of PDMS.  The accumulation of PDMS at the air-oil interface in soybean oil 

held at 180°C was determined by comparing the oil’s internal temperature and the 

apparent surface temperature. A decrease in the apparent surface temperature while the 

oil was held at a constant internal temperature was attributed to a change in the emissivity 

of the surface as a consequence of the accumulation of PDMS in the air-oil interface. The 

presence of PDMS at the air-oil interface was confirmed for 100 ppm of PDMS, a 

concentration greater than the concentration necessary to form a monolayer of PDMS on 

the oil surface.  

 

Keywords: oxygen concentration, polydimethylsiloxane, soybean oil, oil surface 

temperature 

 

Introduction 

During frying, oils degrade as a consequence of oxidative reactions. The high 

temperature in frying (~180°C) accelerates these reactions, especially in polyunsaturated 

oils. A very important factor in the degradation of oils is the availability of oxygen, which 

allows the free radical autoxidation reaction to propagate. Oxygen solubility in oil 

increases with increasing temperature for temperatures <100°C (1, 2). Information on the 

solubility of oxygen in vegetable oils is minimal. Values previously reported include 

0.055 mg/g for soybean oil at 20°C (3) and 0.035 mg/g for olive oil at 25°C (4). 

Polydimethylsiloxane (PDMS), a silicon-based polymer extensively used in industrial 
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frying as an anti-foaming agent at very low concentrations, has a powerful protective 

effect on oil oxidation (5). The mechanism of protection, although extensively studied, is 

not well understood. The viscosity and solubility of the PDMS both affect the extent of 

oil oxidation. PDMS with a viscosity greater than 20 cs prevented fat oxidation better 

than low-viscosity PDMS, and PDMS modified with fatty acids to make it more fat-

soluble was less effective than unmodified PDMS (6). The protective effect also has been 

associated with the accumulation of PDMS in the air-oil interface and a PDMS 

concentration there of 0.05-0.06 µg/cm2 or more (7). Inhibitions of convection currents 

(7, 8) and oxygen transfer to the oil have been proposed as mechanisms for the beneficial 

effect of PDMS on frying oils (7). The influence of PDMS on the oxygen concentration 

in an oil previously was studied (9), however, the study did not reveal the influence of 

PDMS on oxygen concentration at high temperatures. These authors measured oxygen by 

desorbing the gases from the oil with a stream of He at 105°C followed by gas 

chromatography with thermal conductivity detection.  PDMS accumulation on the surface 

of an oil has been demonstrated  (10), but the impact of surface area coverage as a 

mechanism for its effectiveness has not been determined. The objectives of the current 

study were to determine the effects of temperature on the oxygen concentration in 

soybean and olive oils, and of 100 ppb PDMS, the amount needed to form a multilayer on 

the surface, on the oxygen concentration of soybean oil heated between 93 and 180°C.  

 

Experimental Procedures 

 Oil heating: Refined, bleached, and deodorized soybean oil with citric acid added 
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(Golden Chef, Archer Daniels Midland Company, Decatur, IL) and refined commercial 

olive oil were obtained at a local grocery store. The oils (200 g) were heated in a 100 x 50 

mm crystallizing dish (Pyrex, Corning Inc., Corning, NY) at selected temperatures and a 

surface to volume ratio of 0.36 cm-1. A solution of 100 ppm of PDMS (Dow Corning 

200, 350 cs, Dow Corning Co., Midland, MI) was prepared and appropriate amounts 

were applied to the crystallizing dishes and the solvent evaporated before the addition of 

the oil. 

Oxygen concentration measurement: Figure 1 shows a diagram of the experimental 

apparatus. The oxygen concentration was measured using an YSI Model 53 Biological 

Oxygen Monitor (Yellow Springs Instrument Co. Inc., Yellow Springs, OH). The oil in 

the experiment flowed continuously into the measuring apparatus through a 55-cm long 

and 2-mm i.d. stainless-steel tube connected to the oil. Before entering the measuring 

chamber the oil was cooled to 20°C by passage though a thermostat-controlled water 

bath. The measuring chamber was connected to a peristaltic pump (Masterflex, Cole-

Parmer Instrument Co., Chicago, IL) that controlled the oil flow rate at 2 mL/min. After 

the oil reached a selected temperature, it was equilibrated for 10 min before the oxygen 

concentration was measured. The oil was collected both from near the surface and the 

bottom of the oil container. After equilibration, the oil was pumped for 4 min before the 

oxygen concentration was observed. After measurements at each temperature, the oil 

removed was returned to the heating vessel. 

To study the effect of temperature on the oxygen concentration of oils, the oxygen 

analyzer was calibrated at 70% of its measuring scale with air-saturated soybean oil at 

20°C. Air-saturated soybean oil and olive oil at 20°C were heated to selected 
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temperatures, and the oxygen concentrations were measured, both on the surface and near 

the bottom of the vessel.  

To study the effect of 100 ppb PDMS, the amount needed to form a multilayer on the oil 

surface, on the oxygen concentration, treatments containing 100 ppb PDMS and no 

PDMS were heated at  various temperatures. The oxygen analyzer was calibrated at 

100% with air-saturated soybean oil at 20°C. The treatments were applied to 20°C 

saturated soybean oil and the oils heated to the desired temperatures. The oil removed 

from the heating vessel during testing was returned to the vessel after each measurement 

to keep the ratio of PDMS/oil constant. Oil aliquots were taken from the surface of the oil 

and from the bottom of the oil at selected temperatures ranging from 93 to 180°C and the 

oxygen percentage saturation relative to pure soybean oil at 20°C measured.  

Surface temperature determination:  A Traceable Infrared Thermometer (Control 

Company, Friendswood, TX) was used to monitor the apparent surface temperature of the 

oils. The IR thermometer was installed 16 cm above the oil surface. The temperature 

inside the bulk oil was measured by using a glass thermometer tested at 100°C in boiling 

water and at 180°C in soybean oil vs. other glass thermometers to confirm the accuracy 

of the measured temperature. Soybean oils treated with 5, 10, 25, 50, and 100 ppb of 

PDMS and a control without PDMS were heated to an internal temperature of 180°C. 

After reaching 180°C the oil was stirred with the thermometer, and after 1 min, the 

apparent temperature of the surface of the oil was measured by using the infrared 

thermometer.  

The minimum effective concentration of PDMS was calculated to be 0.05-0.06 µg/cm2 by 
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Freeman and collaborators (7). Assuming a monomer cross-section area of 20-25 Å2 (11) 

and assuming all the PDMS to be in the air-oil interface, the PDMS concentration 

necessary to form a monolayer is 

! 

PDMSconcentration =
Areacontainer " mwmonomer

Areamonomer " NA " massoil
 (Eq.1) 

In the vessel used, the PDMS concentration necessary to form a monolayer was estimated 

to be 25 ppb. 

Statistical analysis: Treatments (PDMS concentrations and oil types) were run in 

duplicate. Measurements were made in duplicate and averaged. Means were analyzed by 

ANOVA using PROC MIXED from SAS Institute Inc. (Cary, NC). Comparisons were 

performed by contrasts using the Tukey adjustment for multiple comparisons (12). The 

level of significance was set at P % 0.05 unless otherwise indicated. 

 

Results and Discussion 

 

Influence of temperature on the oil oxygen concentration 

The oxygen concentration increased in soybean oil for temperatures <112°C in agreement 

with previously reported results (1, 2).  Above 112°C, the oil concentration abruptly 

decreased, probably as a result of an increase in the reaction of oxygen and the 

unsaturated fatty acids in the oil (Fig. 2). For olive oil, oxygen concentration reached a 

maximum at 78°C. Above this temperature, the oxygen concentration slowly decreased 
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with increasing temperatures until the temperature reached 112°C. After this point, the 

oxygen concentration also fell, showing a behavior similar to that of soybean oil (Fig. 2). 

The differences in apparent oxygen solubility between soybean oil and olive oil during 

the inclined portion of the curve may result from differences in the composition of the 

two oils.  But for both oils, the oxygen solubility increased with increased temperature 

until a certain point, after which it dropped. At this point, oxygen consumption by the 

autoxidation reactions was probably beginning, thus decreasing the equilibrium oxygen 

concentration.  

 

Influence of PDMS on the oil oxygen concentration 

In general, the oxygen concentration decreased with increased temperatures in both the 

surface and bottom aliquots. For temperatures ranging from 93°C to ~130°C, the oxygen 

concentration for the oil treated with 100 ppb PDMS oil was less than that for the 

untreated control. The same trend continued at temperatures greater than 130oC, 

especially for surface aliquots; however, because of the low oxygen concentrations the 

differences were not significant (Fig. 3). This reduction in oxygen concentration with the 

addition of PDMS strongly suggests that PDMS acted as a barrier to oxygen. This 

reduction in the oxygen concentration is likely responsible for the protective effect of 

PDMS in frying oil. In a previous study, a 4% decrease in atmospheric pressure had a 

50% impact in the reduction of oil deterioration, presumably because of the drop in 

oxygen concentration (13).  

At 112°C, the oxygen concentration on the surface in the PDMS-treated oil was greater 
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than in the bottom of the vessel (Fig.3). For the other treatments, no differences between 

surface and bottom aliquots were observed.  

 

Oil surface temperature 

Table 1 shows the mean values of the core and surface temperatures for the various 

treatments. The apparent surface temperatures for PDMS treatments greater than the 

monolayer concentration were significantly lower than the temperature in the core of the 

oil by ~10°C. It previously was suggested that such differences between surface and core 

temperatures result from convective currents being inhibited by the PDMS and resulting 

in a decrease in surface temperature (14). Intuitively, the presence of a 10°C difference 

between the surface and the bulk oil would seem very difficult to maintain. However, the 

output of infrared thermometers is dependent on the distance between the measured 

object and the thermometer, the temperature of the object, and the emissivity of the 

object. The emissivity of an object is dependent on the material making up the surface, 

surface characteristics such as smoothness or roughness, the wavelength being measured, 

and the actual temperature (15). In this case, the change in apparent surface temperature, 

as read with the infrared thermometer, may not be caused by a real change in temperature 

but by a change in emissivity of the surface. For the 50- and 100-ppb PDMS treatments, 

the amounts of PDMS were enough to form 2 or 4 layers, respectively, of the polymer on 

the oil, if all the PDMS were on the surface. The accumulation of PDMS on the air-oil 

interface may have changed the optical characteristics of the interface, which was 

translated as a seemingly lower surface temperature. Thus, for 100-ppb PDMS the 
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observed apparent surface temperature was less than for 50 ppb PDMS, possibly meaning 

that the amount of PDMS on the air-oil interface was greater for the 100 ppb treatment.  

 Internal and apparent surface temperatures in pure PDMS at 180°C also were tested. In 

this case, the variability of the surface temperature measurements was very high, and the 

mean readings tended to be higher than the internal PDMS temperature. The variability of 

the surface temperature began at ~130 - 150°C (data not shown), which is the temperature 

at which the PDMS decomposes as noted on the label of the manufacturer. These findings 

suggest that the change in apparent surface temperature is caused not only by the PDMS 

on the surface, but also by an interaction with the soybean oil along with PDMS 

degradation products which may accumulate on the air-oil interface. 

 

Conclusions 

For both soybean and olive oils, the oxygen concentration increased with increased 

temperature until a certain point where it abruptly decreased. At this point, autoxidation 

reactions rapidly consumed the oxygen, thus decreasing its concentration. 

The PDMS accumulated in the air-oil interface as demonstrated by a change in the 

internal and apparent surface temperatures of the oil, a measurement likely a consequence 

of a change in emissivity of the oil surface. At temperatures above 93°C, PDMS-treated 

soybean oil had a lower oxygen concentration than a control soybean oil with no added 

PDMS. Thus, PDMS accumulation on the surface of the oil decreased the uptake of 

oxygen from the oil. This decrease in oxygen uptake could account for the protective 

effect of PDMS in frying oils. 
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Table 1 Internal and apparent surface temperatures of oil containing selected 
concentrations of PDMS  

PDMS concentration (ppb) 0 5 10 25 50 100 

Apparent surface temp. (°C) 183a 183a 181a 181a 174b 170c 

Internal temp. (°C) 180a 180a 180a 180a 180a 180a 
a-cDifferent superscripts within the table denote a significant statistical difference 
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Fig. 1 Scheme of the apparatus used to measure the oxygen concentration in oil at various 
temperatures. The lab jack was adjusted to take oil aliquots from the surface or the 
bottom of the oil 
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Fig. 2 Percentages of oxygen in soybean and olive oils at selected temperatures for 
samples collected near the top and bottom of the oil. 100% represents the solubility of the 
oxygen in the oils at 20oC. Bars around each data point indicate standard error of the 
mean for all data points 
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Fig. 3 Percentages oxygen saturation of soybean oil containing 100 ppb PDMS and a 
control soybean oil containing no added PDMS at selected temperatures collected near 
the top and bottom of the oil. Different letters within a temperature denote significant 
differences 

!
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Abstract 

Soybean oils treated with 25 or 100 ppb polydimethylsiloxane (PDMS) and a control with 

no PDMS were heated at 180°C for 48 h. The decomposition of linoleate and tocopherols 

was monitored as well as the changes in concentration of 4-hydroxynonenal (HNE). 4-

Hydroxynonenal was rapidly formed at the beginning of the heating period in the control 

and in the oil containing 25 ppb PDMS. After reaching a maximum (~0.033 µmol/g oil), 

the HNE concentration slowly decreased because of degradation. The maximum HNE 
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concentration occurred earlier in the control oil (~18 h, 0.034 µmol/g oil) than in the 25-

ppb PDMS oil (28 h, 0.033 µmol/g oil). In the 100-ppb PDMS treatment, the increase in 

HNE concentration was very slow during the first 32 h. After this point, likely because of 

both tocopherol disappearance and PDMS degradation, the HNE concentration increased 

faster, reaching 0.033 µmol/g oil at 46 h. For this treatment, the HNE concentration did 

not begin declining within 48 h heating. Overall, PDMS had a positive effect in 

preventing the formation of the toxic HNE. Thus, it should be considered as a beneficial 

additive in frying oils, especially for discontinuous frying operations where long standby 

times are required. 

 

Keywords: 4-hydroxynonenal, polydimethylsiloxane, soybean oil, frying, tocopherol 

 

Introduction 

During frying, oils are exposed to oxygen and high temperature. These harsh conditions 

are especially critical for frying oils such as soybean oil, which is rich in polyunsaturated 

esters. Polyunsaturated fatty acid oxidation products include aldehydes, ketones, alcohols 

and hydrocarbons.  The fatty acid present in the greatest proportion in soybean oil is 

linoleic acid, which accounts for more than 50% of the fatty acids. One linoleic acid 

degradation product is 4-hydroxy-2-(E)-nonenal (HNE) (1). 

The physiological role of HNE has been studied extensively, as a product of lipid 

peroxidation and for its effect on oxidative stress (2). 4-Hydroxynonenal can react 
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spontaneously with glutathione (GSH) (2), which is abundant in the cells of the 

gastrointestinal tract where it serves as a defense against oxidative stress.  Thus, HNE 

production may contribute to the reduction of GSH and impair defenses against oxidative 

compounds (3). DNA and protein synthesis have been reported to be affected by HNE at 

concentrations between 1 and 50 µM (4). 

Polydimethylsiloxane (PDMS) is a silicon-based polymer used by the fried-food industry 

as an antifoaming agent during frying. Previous studies have demonstrated a protective 

effect of PDMS in frying oils when used at a concentration greater than the concentration 

necessary to form a monolayer in the air-oil interface (5, 6). The effect of PDMS on the 

formation of HNE in oils rich in linoleic acid has not been evaluated. The objective of 

this paper was to study the influence of PDMS on the formation and degradation of HNE 

from linoleate as well as to understand the degradation of PDMS at frying temperature. 

 

Experimental Procedures 

Materials:  The oil used was refined, bleached, and deodorized soybean oil with citric 

acid added (Golden Chef, Archer Daniels Midland Company, Decatur, IL). The PDMS 

was food-grade Dow Corning 200, 350 centistokes (Dow Corning Co., Midland, MI).  

Treatments:  A stock solution containing 100 ppm of PDMS in hexane was prepared, and 

appropriate amounts were added to 100 x 50 mm crystallizing dishes (Pyrex, Corning 

Inc., Corning, NY) and the solvent was evaporated. Two replicates of all treatments were 

prepared. Two hundred grams of soybean oil was added to each container giving an 

initial surface to volume ratio of 0.36 cm-1. The treatments were heated simultaneously to 
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180°C and held for 48 h. Oil aliquots of 2.5 mL were removed every 2 h for further 

analysis and immediately frozen by immersion in liquid nitrogen, and stored in glass vials 

at -80°C. The amount of oil removed was not replenished. 

Fatty acid composition: Oil aliquots were converted to fatty acid methyl esters (FAME) 

according to Hammond (7). The FAME were analyzed by gas chromatography using a 

Hewlett-Packard 5890 Series II chromatograph with a flame ionization detector and 

split/splitless injector. The column was 15 m with a 0.25 mm x 0.2 µm film of SP-2330 

(Supelco, Bellefonte, PA). The chromatographic conditions were the same as those for 

Gerde et al (6): injector temperature, 230°C, detector temperature, 230°C, oven 

temperature program, 150 to 180°C at 5°C/min with no holding time. The carrier gas 

(He) was set at 5.4 ml/min, the auxiliary gas flow (He) was 19.4 mL/min. Hydrogen flow 

was 13.9 mL/min, and air flow 426 mL/min. The split ratio was 24:1. The disappearance 

of methyl linoleate (18:2) was monitored by using the amount of methyl palmitate present 

in the oil as an internal standard and the linoleate to palmitate ratios (18:2/16:0) were 

calculated and transformed to µmol 18:2/g FAME. The natural logarithm of the 

concentrations were computed and plotted vs. time. Linear or bilinear equations, if points 

of change in slope were present, were fitted to pseudo first-order kinetics for the 

degradation of 18:2, and the rate constants were calculated before and after the change of 

slopes (k1 and k2) (6). 

Tocopherol concentration: Oil aliquots were accurately weighed and diluted with hexane 

to obtain 0.1 g/mL solutions. The concentrations of the various tocopherols were 

determined by injecting 20 µL of the solution in a Beckman Coulter System Gold HPLC 

(Beckman Coulter Inc., Fullerton, CA) equipped with a 25 cm x 4.6 mm 5µ 60Å 
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LiChrosorb Silica column (ES Industries Chromega Columns, West Berlin, NJ) with a 

photo diode array detector set at 292 nm. The elution solvent was isopropanol:hexane 

(5:95 v/v) and the flow rate was 0.7 mL/min. The tocopherol concentrations were 

expressed as ppm and external standards were used for quantification. Assuming the 

disappearance of the tocopherols followed first order kinetics, the natural logarithms of 

the tocopherol concentrations were calculated and plotted versus time. Linear or bilinear 

equations, if changes in slope were present, were fitted to a model and the rate constants 

were calculated before and after the changes in slope (k1 and k2) (6).   

HNE concentration: The HNE concentration in the oil was measured as described by 

LaFond (8). Briefly, after adding a known amount of 4-hydroxy-9,9,9-d3-non-2E-enal 

(HNE-d3) (Cayman Chemical Co., Ann Arbor, MI), the oil aliquots were extracted twice 

for 20 min with 10 mL water, and the combined water extracts were treated with 1 mL of 

1% O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA, Sigma-

Aldrich Corp., Saint Louis, MO) solution in methanol to derivatize the aldehyde group. 

The PFBHA solution also contained 0.1% tert-butyl hydroxytoluene (BHT) to minimize 

oxidation.  The reaction mixture was sonicated at room temperature for 1 h and extracted 

twice with 10 mL pentane. After evaporating the pentane under a gentle stream of 

nitrogen, the extracts were treated with 200 µL of N,O –Bis (trimethylsilyl) 

trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS, Sigma-Aldrich Corp., 

Saint Louis, MO) (9:1 v/v) and heated at 90°C in sealed tubes to derivatize the alcohol 

group. -

The reaction mixtures were then diluted to 1 mL with methylene chloride, and the 

samples were analyzed by gas chromatography electron impact mass spectrometry (GC-
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MS). The GC-MS was an Agilent 6890 (Agilent Technologies Inc., Santa Clara, CA) 

connected to a Micromass GCT Time of Flight (TOF) mass spectrometer (Waters Corp., 

Milford, MA). The GC separation was done using a 30 m x 0.25 mm x 0.25 µm film DB-

5MS capillary column (Agilent Technologies Inc., Santa Clara, CA) with a 1-m guard 

column (uncoated, Agilent Technologies Inc., Santa Clara, CA). The chromatographic 

parameters were: injector temperature, 260°C and oven temperature program, 100°C for 

1 min, 100 to 240°C at 8°C/min, and 240 to 300°C at 25°C/min with a final holding time 

of 3.1 min. The carrier gas (helium) flow was 1.0 ml/min. The mass spectrometer 

conditions were: 2 scans/sec, ionization mode, positive electron impact, function type, 

TOF MS, and mass range 45 to 600. The m/z (mass to charge ratio) 352, 226, and 242 

fragments were used to identify the HNE peaks and the m/z 352, 229, and 245 were used 

to identify the HNE-d3 peaks. Because the m/z 352 fragment is common to HNE and 

HNE-d3, only the areas of the integrated peaks corresponding to the m/z 226 and 242 

fragments and the m/z 229 and 245 fragments were used for HNE and HNE-d3 

quantification, respectively. The concentration of HNE and HNE-d3 standard solutions 

used were monitored spectrophotometrically by evaporating the solvent of an aliquot of 

the standard solution, re-dissolving it in water, and reading it in the spectrophotometer at 

'=223 nm. The concentration was calculated by using the molar extinction coefficient of 

HNE in water at '=223 nm (=13750 (9, 10). 

Kinetics model parameters estimation:  The equation parameters were estimated by using 

GraphPad Prism software version 4.03 for Windows (GraphPad Software, San Diego, 

CA) and all the regression curves fitted had an R2 >0.9. 

Statistical analysis: The estimated kinetic coefficients were analyzed using analysis of 



www.manaraa.com

!

!

"Q!

!!!!!"Q!

variance (ANOVA) with the SAS 9.1 software mixed models procedure (SAS Institute 

Inc., Cary, NC). Comparisons were evaluated by contrasts using Tukey’s modification at 

a level of significance of #=0.05 unless otherwise indicated (11). 

 

Results and Discussion 

Degradation of 18:2 and tocopherols 

For both the 25-ppb and 100-ppb PDMS treatments, there was an increase of slope (rate 

of degradation) in the plots of ln [18:2] versus time during the heating of the oil (Fig. 1) 

in agreement with previously reported data (6). The times of change in the rate of 

degradation (T) were calculated, and the rates before and after this time were compared 

(Table 1). The rates after T were different from the rates before T (p<0.065). For the 

control oil, no change in rate was observed. The rate after T for the 25-ppb PDMS 

treatment was not significantly different from that of the control oil. But for the 100 ppb 

PDMS treatment, the rate of 18:2 degradation after T was less than that of the control oil. 

The T occurred later for the 100 ppb PDMS treatment than for the 25 ppb PDMS 

treatment (p=0.055). As previously suggested, this change in slopes of 18:2 degradation 

may be controlled by the disappearance of tocopherols at PDMS concentrations greater 

than the monolayer concentration (6). 

For #-tocopherol disappearance, there was a change in rate only in the 100-ppb PDMS 

treatment (Fig. 2). A change in rate was not detected for the 25-ppb PDMS treatment.  

The rate after T in the 100-ppb PDMS treatment was not different from the rates of #-

tocopherol in the control or 25-ppb PDMS-treated oils (Table 2).  
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The degradation of $-tocopherol showed rate changes for both the 25- and 100-ppb 

PDMS-treated oils (Table 2) in agreement with previously reported results (6).  The T 

occurred later in the 100-ppb PDMS treatment than in the 25-ppb PDMS treatment. For 

the 25 ppb PDMS treatment treatments, the rate after T was not different from the rate of 

the degradation of $-tocopherol in the control oil (Fig. 2). For the 100 ppb PDMS the rate 

after T was greater than in both the control and the 25-ppb PDMS-treated oils.  Table 2 

shows that #-tocopherol degraded faster than $-tocopherol, in agreement with previous 

reports (6, 12). Interfering compounds co-eluted with !-tocopherol, so its rate of 

disappearance could not be determined.   

 

4-Hydroxynonenal formation 

The concentration of HNE at selected times was measured. For the control oil, HNE 

concentration rapidly increased during the first 14 h of heating, then slowed, reaching a 

maximum concentration at ~18 h heating of 0.034 µmol/g oil (Fig. 3). For the 25-ppb 

PDMS oil, the increase in HNE concentration was less steep, and the maximum, 0.033 

µmol/g oil, occurred at 28 h (Fig. 3). For both treatments, there was a slow decrease in 

the HNE concentration with time after reaching the maximum. In the 100-ppb PDMS 

treatment, the increase in HNE concentration was much slower than in the other 

treatments during the first 32 h heating. After 32 h the HNE concentration increased 

faster, and after 46 h of heating, reached levels comparable to the maxima found for the 

other treatments (0.033 µmol/g oil) (Fig. 4). There was no perceptible decline in HNE 

concentration during the 48 h the oil was heated. 
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HNE is formed as a product of linoleate degradation, but it may further degrade by 

additional reactions. Assuming pseudo first-order kinetics for these degradations: 

 

Where k18:2 could be k1 or k2, depending on the stage of degradation of 18:2 (6). 

 

  

        (Eq. 1) 

       (Eq. 2) 

        (Eq. 3) 

     (Eq. 4) 

 

For the control oil and the 25 ppb (the monolayer concentration) treatments [HNE]0 was 

0, as measured in the unheated oil, with the model for those treatments described by Eq. 

5. 

       (Eq. 5) 

Although there was a slight change in slope during heating of the 25-ppb PDMS 

treatment, to simplify the model, degradation of 18:2 was assumed to follow a pseudo 
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first-order kinetics with a constant slope k18:2= 0.0134. Based on this assumption, the 

kinetic parameters of the degradation of 18:2 and the formation and degradation of HNE 

in the control oil and the 25 ppb PDMS oil are presented in Table 4 and the data points 

with the curves generated from the mean of the parameters of the respective fitted curves 

in Figs. 3 and 4. 

In the treatment with 100-ppb PDMS, the model is more complicated so the data was 

fitted by dividing the plot into several intervals (Fig. 4). At the beginning of the heating 

period (before 4 h zone I), there was an abrupt increase in the HNE concentration. After 

this period, there was a linear increase in the concentration of HNE for approximately 32 

h (zone II). At this point there was a transition zone (zone III), where the velocity of the 

reaction increased until the concentration of HNE followed kinetics comparable to that of 

the control oil (38-48 h, zone IV). In zone I, the rapid increase in HNE concentration 

probably resulted from the decomposition of peroxides formed during the temperature 

rise in the oil, coupled with the protective effect at higher temperatures of ample amounts 

of PDMS that reduced the destruction of HNE to very low levels. The initial period lasted 

4 h in this study because that was the first aliquot analyzed after the system reached 

180°C.  

During the second stage (zone II) the concentration of HNE increased at a very low rate 

(Fig. 4). Because of the very low concentration of HNE and the comparatively high 

concentration of 18:2, the probability of oxygen or a free radical attacking HNE instead 

of 18:2 was very low. Thus, it was assumed that, during this period, the degradation of 

HNE should be very small compared to the rate of formation of HNE. To compare the 

rest of the parameters with the models obtained for the control and the 25-ppb PDMS 
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treated oils, the time (t) and the initial concentration of HNE ([HNE]0) were adjusted to 

consider 4 h the initial point of zone II. Thus, t= t-4 h and [HNE]0 was the [HNE] 

measured in the initial point of zone II (4 h after the start of heating). Likewise, the 

degradation of 18:2 that occurred in zone I was taken into account; therefore, the initial 

concentration of 18:2 ([18:2]0) was the concentration of 18:2 after heating the oil for 4 h.  

Zone III likely was a transition zone between zones II and IV, in which the system 

adjusted to a lower PDMS level similar to that of the unprotected soybean oil.  Also 

during this period, the points of change in slope of the degradation of tocopherols and 

18:2 occurred. For zone IV (Fig. 4) it was again necessary to consider the changes that 

occurred in the system before the starting time and to adjust the parameters appropriately: 

t=t-38, [HNE]0 and [18:2]0 were the concentrations of HNE and 18:2 at t=38 h, 

respectively. Both kf and kd in zone II were smaller than in zone IV. In zone II of the 100-

ppb PDMS treatment both kf and kd were smaller than those in the control oil and the 25-

ppb PDMS treatment. In zone IV, kf for the 100-ppb PDMS treatment was not different 

from kf in either the control or the 25-ppb PDMS treatment. At the same stage, the kd of 

the 100-ppb PDMS treatment was less than that of the control oil, but similar to that of 

the 25-ppb PDMS treatment (Table 3). 

The kf, the kinetic constant for the formation reaction of HNE, is a function of k18:2. 

Therefore, the ratio of kf/k18:2  is a measure of the proportion of HNE formed compared to 

other 18:2 degradation products. This ratio was greater in zone IV and in the control oil 

than in zone II, probably because of the effect of PDMS on the rate of oxygen uptake by 

the oil (6). After the PDMS degraded to a level where it could no longer maintain a low 

oxygen uptake (zone IV), the formation of oxygenated degradation products, such as 
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HNE, would have been favored, thus explaining the similarity of kf/k18:2 for the control 

oil and the 100-ppb PDMS treatment during zone IV. 

The production of HNE in heat-abused oils has been previously studied (1, 13). In one 

study, soybean oil was heated at 185°C in a round bottom flask with constant air 

bubbling. The HNE increased rapidly in the beginning followed by a decrease after 

reaching a maximum concentration. The maximum HNE concentration (0.27 µmol/g oil) 

occurred after 6 h heating (13). In another study, pure methyl linoleate was heated at 

185°C, the maximum HNE concentration was measured after 3 h heating (0.54 µmol/g 

FAME) and then it decreased (1). These values are considerably higher than those found 

in the current study, but show similar trends. Bubbling air through the oil would produce 

much better oxygenation, leading to higher levels of HNE in the early stages when there 

would be abundant amounts of linoleate. Another study reported the presence of 0.021 

µmol HNE/g oil after heating soybean oil in an open beaker for 8 h with constant air 

bubbling (14).  This value is much closer to the values obtained in the current study.  

The change in the kinetic constants of the disappearance of both tocopherols and 18:2 and 

in the formation and degradation of HNE for the three treatments suggests that the 

protective effect of PDMS is lost after heating for several hours. PDMS is believed to 

depolymerize and degrade by a free radical mechanism when heated to high temperatures 

(290°C in the presence of air) (15). 

 

Conclusions 

The protective effect against oxidation by PDMS was confirmed in soybean oil. To be 
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effective, the concentration of PDMS seemingly must be greater than the calculated 

monolayer concentration, which, in our study, was about 25 ppb. In soybean oil with 100 

ppb PDMS, the slopes of #- and $-tocopherol and 18:2 degradation decreased compared 

to the control, and changes in rates occurred. The PDMS concentration also influenced 

the formation and degradation of HNE. To facilitate the analysis of the evolution of the 

concentration of HNE in soybean oil with 100-ppb PDMS, the data was divided into four 

intervals (zones I, II, III, and IV). The times at which the changes in rates for 18:2 and 

tocopherol degradation occurred were very close to or within the transition zone III of the 

HNE curve when 100-ppb PDMS was used. As previously suggested, this change in 

slopes of 18:2 degradation may be controlled by the disappearance of tocopherols at 

PDMS concentrations greater than the monolayer concentration. However, the increase in 

the rate of formation of HNE in zone IV of the 100-ppb PDMS treatment may have 

occurred because of PDMS degradation. Thus, a consequent increase in the uptake of 

oxygen may be the reason for the greater kf/k18:2 ratio in zone IV of the 100-ppb PDMS 

treatment than in both the 25-ppb PDMS treatment and the control oil. 
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Mean rate (k18:2)  Treatment 
(ppb PDMS) 

Mean T 
 (h) before change (k1) after change (k2) 

0 Control - 0.0154x 0.0154x 
25 17y 0.0108a, y

 

0.0146b, x 

100 29x 0.0031a, z 0.0064b, y 
 
a-bDifferent superscripts in the same row of columns 3 and 4 indicate significant 
differences at p%0.065 
x-zDifferent superscripts in the same column indicate significant differences at p%0.055
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Table 2 The time of change in rates (T) and rates of ln[#-tocopherol] vs. time and ln[$-
tocopherol] vs. time in a control soybean oil with no PDMS added and in soybean oil 
with 25 or 100 ppb PDMS heated at 180oC 
 

 Treatment 
(ppb PDMS) 

Mean T 
(h) 

Mean rate before 
change (k1) 

Mean rate after 
change (k2) 

0 Control - 0.3559x 0.3559x 

25 - 0.2279xy 0.2279x #-Tocopherol 

100 32 0.0590a, y 0.3724b, x 

0 Control - 0.1424x 0.1424y 

25 13y 0.0835a, y
 

0.1536b, y $-Tocopherol 

100 37x 0.0287a, z 0.1963b, x  

 
a-bDifferent superscripts in the same row of columns 3 and 4 indicate significant 
differences at p%0.05  
x-zDifferent superscripts in the same column indicate significant differences at p%0.05 
within each tocopherol type 
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Table 3 Mean kinetic parameters of the formation of HNE in soybean oil with no PDMS 
added and in soybean oil with 25 or 100 ppb PDMS held at 180°C 

 100 ppb PDMS 25 ppb PDMS Control 
 Zone II  

(t=t-4 h) 
Zone IV  

(t=t-38 h) 
  

[18:2]0(*) 1771 µmol/g 1531 µmol/g 1807 µmol/g 1807 µmol/g 
k18:2(*) 0.0031 0.0064 0.0134(**) 0.0154 
kf 1.598E-7c 2.310E-6ab 1.720E-6b 3.262E-6a 
kd 0.0082c 0.0529b 0.0656b 0.1295a 
kf/k18:2 5.19E-5c 3.524E-4a  1.230E-4bc 2.121E-4ab 
 

(*)[18:2]0 and k18:2 were obtained from the curves representing degradation of 18:2 vs. 
time and fixed during the fitting of the other parameters 

(**)18:2 degradation in 25 ppb PDMS was considered to be linear to simplify the 
calculations  
a, cDifferent superscripts in the same row indicate significant differences at p%0.05 
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Fig. 1 Decrease of the natural logarithm of the [linoleate] in two replications of control 
soybean oil containing no polydimethylsiloxane (PDMS) and in soybean oil treated with 
25-ppb or 100-ppb PDMS during heating at 180°C and the curves generated from the 
mean of the parameters of the respective fitted curves 
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Fig. 2 Decrease of the natural logarithm of the [#-tocopherol] and [$-tocopherol] in two 
replications of control soybean oil containing no polydimethylsiloxane (PDMS) and in 
soybean oil treated with 25-ppb or 100-ppb PDMS during heating at 180°C and the 
curves generated from the mean of the parameters of the respective fitted curves 
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